|
||||||||||
|
Science and the Islamic world—The quest for rapprochement
Internal causes led to the decline of Islam's scientific greatness long before the era of mercantile imperialism. To contribute once again, Muslims must be introspective and ask what went wrong. August 2007, page 49 This article grew out of the Max von Laue Lecture that I delivered earlier this year to celebrate that eminent physicist and man of strong social conscience. When Adolf Hitler was on the ascendancy, Laue was one of the very few German physicists of stature who dared to defend Albert Einstein and the theory of relativity. It therefore seems appropriate that a matter concerning science and civilization should be my concern here. The question I want to pose—perhaps as much to myself as to anyone else—is this: With well over a billion Muslims and extensive material resources, why is the Islamic world disengaged from science and the process of creating new knowledge? To be definite, I am here using the 57 countries of the Organization of the Islamic Conference (OIC) as a proxy for the Islamic world. It was not always this way. Islam's magnificent Golden Age in the 9th–13th centuries brought about major advances in mathematics, science, and medicine. The Arabic language held sway in an age that created algebra, elucidated principles of optics, established the body's circulation of blood, named stars, and created universities. But with the end of that period, science in the Islamic world essentially collapsed. No major invention or discovery has emerged from the Muslim world for well over seven centuries now. That arrested scientific development is one important element—although by no means the only one—that contributes to the present marginalization of Muslims and a growing sense of injustice and victimhood. Such negative feelings must be checked before the gulf widens further. A bloody clash of civilizations, should it actually transpire, will surely rank along with the two other most dangerous challenges to life on our planet—climate change and nuclear proliferation. First encounters Islam's encounter with science has had happy and unhappy periods. There was no science in Arab culture in the initial period of Islam, around 610 AD. But as Islam established itself politically and militarily, its territory expanded. In the mid-eighth century, Muslim conquerors came upon the ancient treasures of Greek learning. Translations from Greek into Arabic were ordered by liberal and enlightened caliphs, who filled their courts in Baghdad with visiting scholars from near and far. Politics was dominated by the rationalist Mutazilites, who sought to combine faith and reason in opposition to their rivals, the dogmatic Asharites. A generally tolerant and pluralistic Islamic culture allowed Muslims, Christians, and Jews to create new works of art and science together. But over time, the theological tensions between liberal and fundamentalist interpretations of Islam—such as on the issue of free will versus predestination—became intense and turned bloody. A resurgent religious orthodoxy eventually inflicted a crushing defeat on the Mutazilites. Thereafter, the open-minded pursuits of philosophy, mathematics, and science were increasingly relegated to the margins of Islam.1 Bleak as the present looks, that outcome does not have to prevail. History has no final word, and Muslims do have a chance. One need only remember how the Anglo–American elite perceived the Jews as they entered the US at the opening of the 20th century. Academics such as Henry Herbert Goddard, the well-known eugenicist, described Jews in 1913 as "a hopelessly backward people, largely incapable of adjusting to the new demands of advanced capitalist societies." His research found that 83% of Jews were "morons"—a term he popularized to describe the feeble-minded—and he went on to suggest that they should be used for tasks requiring an "immense amount of drudgery." That ludicrous bigotry warrants no further discussion, beyond noting that the powerful have always created false images of the weak. Progress will require behavioral changes. If Muslim societies are to develop technology instead of just using it, the ruthlessly competitive global marketplace will insist on not only high skill levels but also intense social work habits. The latter are not easily reconcilable with religious demands made on a fully observant Muslim's time, energy, and mental concentration: The faithful must participate in five daily congregational prayers, endure a month of fasting that taxes the body, recite daily from the Qur'an, and more. Although such duties orient believers admirably well toward success in the life hereafter, they make worldly success less likely. A more balanced approach will be needed. Science can prosper among Muslims once again, but only with a willingness to accept certain basic philosophical and attitudinal changes—a Weltanschauung that shrugs off the dead hand of tradition, rejects fatalism and absolute belief in authority, accepts the legitimacy of temporal laws, values intellectual rigor and scientific honesty, and respects cultural and personal freedoms. The struggle to usher in science will have to go side-by-side with a much wider campaign to elbow out rigid orthodoxy and bring in modern thought, arts, philosophy, democracy, and pluralism. Respected voices among believing Muslims see no incompatibility between the above requirements and true Islam as they understand it. For example, Abdolkarim Soroush, described as Islam's Martin Luther, was handpicked by Ayatollah Khomeini to lead the reform of Iran's universities in the early 1980s. His efforts led to the introduction of modern analytical philosophers such as Karl Popper and Bertrand Russell into the curricula of Iranian universities. Another influential modern reformer is Abdelwahab Meddeb, a Tunisian who grew up in France. Meddeb argues that as early as the middle of the eighth century, Islam had produced the premises of the Enlightenment, and that between 750 and 1050, Muslim authors made use of an astounding freedom of thought in their approach to religious belief. In their analyses, says Meddeb, they bowed to the primacy of reason, honoring one of the basic principles of the Enlightenment. In the quest for modernity and science, internal struggles continue within the Islamic world. Progressive Muslim forces have recently been weakened, but not extinguished, as a consequence of the confrontation between Muslims and the West. On an ever-shrinking globe, there can be no winners in that conflict: It is time to calm the waters. We must learn to drop the pursuit of narrow nationalist and religious agendas, both in the West and among Muslims. In the long run, political boundaries should and can be treated as artificial and temporary, as shown by the successful creation of the European Union. Just as important, the practice of religion must be a matter of choice for the individual, not enforced by the state. This leaves secular humanism, based on common sense and the principles of logic and reason, as our only reasonable choice for governance and progress. Being scientists, we understand this easily. The task is to persuade those who do not.
Pervez Hoodbhoy is chair and professor in the department of physics at Quaid-i-Azam University in Islamabad, Pakistan, where he has taught for 34 years.
References 1. P. Hoodbhoy, Islam and Science—Religious Orthodoxy and the Battle for Rationality, Zed Books, London (1991). 2. M. A. Anwar, A. B. Abu Bakar, Scientometrics 40, 23 (1997). 3. For additional statistics, see the special issue "Islam and Science," Nature 444, 19 (2006). 4. M. Yalpani, A. Heydari, Chem. Biodivers. 2, 730 (2005). 5. Statistical, Economic and Social Research and Training Centre for Islamic Countries, Academic Rankings of Universities in the OIC Countries (April 2007), available at [LINK]. 6. The News, Islamabad, 24 April 2007, available at [LINK]. 7. For more information on the red heifer venture, see [LINK]. 8. N. Fergany et al., Arab Human Development Report 2002, United Nations Development Programme, Arab Fund for Economic and Social Development, New York (2002), available at [LINK].
Source: http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_60/iss_8/49_1.shtml |
Please report any
broken links to
Webmaster
Copyright © 1988-2012 irfi.org. All Rights Reserved.
Disclaimer